76[K].-R. Doornbos \& H. J. Prins, "On slippage tests. I," Indagationes Mathematicae, v. 20, 1958, p. 38-46 (Proc. Kon. Ned. Ak. van Wetensch., v. 61, Sec. A, 1958, p. 38-46); "On slippage tests. II," Ibid., p. 47-55; "On slippage tests. III," Ibid., p. 438-447.
The tables, which appear in part III, are related to two of the special cases included in this series of papers. In the first, from each of k Poisson distributions, with means μ_{i}, a random drawing Z_{i} is taken ($i=1,2, \cdots k$). To test the null hypothesis that $u_{i}=u, i=1, \cdots, k$, for which the table is prepared, against the alternate that one of the u_{i} 's is greater than the others which have equal values, the authors propose the statistic, $\max Z_{i}$. For $k=2(1) 10$ and the sum of the k observations, $n=2(1) 25$, values of $\max Z_{i}$ are given for which the significance levels are near 5% and 1%. In each case the actual significance levels are given to 3 D .

In the second case, each of k objects is ranked by each of m observers. The null hypothesis under test is that each of the m rankings is independently and randomly chosen from the set of permutations of the integers $1,2, \cdots, k$. As a test against the alternate that one of the objects has a higher probability of being ranked low while the others are ranked in random order, the proposed statistic is min S_{i} where S_{i} is the sum of ranks assigned the i-th object ($i=1,2, \cdots, k$). Critical values S_{α} of $\min S_{i}$ for significance levels near $\alpha=.05, .025, .01$ are tabled for $m=3(1) 9$ and $k=2(1) 10$. Again in each case true significance levels are shown to 3D.
C. C. Craig

University of Michigan
Ann Arbor, Michigan
$77[\mathrm{~K}]$.-F. G. Foster, "Upper percentage points of the generalized beta distribution. III," Biometrika, v. 45, 1958, p. 492-503.
Let $\theta_{\text {max }}$ denote the greatest root of $\left|\nu_{2} B-\left(\nu_{1} A+\nu_{2} B\right)\right|=0$ where A and B are independent estimates, based on ν_{1} and ν_{2} degrees of freedom, of a parent dispersion matrix of a four-dimensional multinormal distribution. Define

$$
I_{x}(4 ; p, q)=\operatorname{Pr}\left(\theta_{\max } \leqq k\right)
$$

with $p=\frac{1}{2}\left(\nu_{2}-3\right), q=\frac{1}{2}\left(\nu_{1}-3\right)$. Employing methods similar to those used in two preceding papers [1], [2] for the two and three-dimensional cases, the author tabulates $80 \%, 85 \%, 90 \%, 95 \%$, and 99% points of $I_{x}(4 ; p, q)$ to 4 D for $\nu_{1}=5(2) 195$ and $\nu_{2}=4(1) 11$.
C. C. Craig

University of Michigan
Ann Arbor, Michigan

1. F. G. Foster \& D. H. Rees, "Upper percentage points of the generalized beta distribution. I," Biometrika, v. 44, 1957, p. 237-247. [MTAC, Rev. 165, v. 12, 1958, p. 302]
2. F. G. Foster, "Upper percentage points of the generalized beta distribution. II," Biometrika, v. 44, 1957, p. 441-453. [MTAC, Rev. 167, v. 12, 1958, p. 302.]

78[K].-W. Hetz \& H. Klinger, "Untersuchungen zur Frage der Verteilung von Objekten auf Plätze," Metrika, v. 1, 1958, p. 3-20.
For the classical distribution problem in which k indistinguishable objects are randomly distributed into n distinguishable cells (as in Maxwell-Boltzmann

